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EXECUTIVE SUMMARY

An extended form of the Morison equation force model is con-
sidered for the case of an offshore structure vertical leg element
in a combined wave and current flow field. The measurement data
used in the analysis is that from the OTSinvestigation in the
Gulf of Mexico, with the data in the form of 27-30 second wave
segments containing velocity and force component measurements in

two perpendicular directions in the horizontal plane. The
analysis method used was the system identification technique that
has been previously applied with success to similar type data
when using the conventional Morison force model, with the objective
being the determination of the drag and inertia force coefficient
values together with the variation of these coefficients with
different characteristic flow parameters.,

A combined mathematical-computational analysis showed that
the extended Morison model, when subjected to the procedures of
the system identification method used, resulted in essentially
the same type equations as for the conventional Morison model.
Thus no separate determination of the current value, or the
possible dependence of the force coefficients on any parameter
involving the current, could be found from this analysis. The
only possible dependence of the force coefficients on the current
would be parametric, and would only be determined from analysis
of the determined force coefficient values and their variation
with characteristic dimensionless parameters.

The analysis of the force coefficient results shows the
dependence of these coefficient values on such quantities as
Reynolds number (Re), Keulegan-Carpenter number (KC), the ratio
of current to wave velocity, etc. in both graphical and tabular

form. There is no definitive dependence of the force coefficients
on any current parameter, although there is some small indication
of a reduction of C as the relative current-wave velocity ratio
increases. The majer utility of the present results is 222 sets
of coefficients, applying to both smooth (painted) and slightly
rough (unpainted) elements of an offshore structure, that represent
part of a data base for establishing design ranges of such force
coefficients for use in offshore structure design.

* V
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INTRODUCTION

The usual mathematical model employed to represent the
forces due to waves acting on a stationary offshore structure
employs the Morison equation representation [1]. This par-
ticular method involves consideration of the force to be due
to two different contributions, viz. an inertial force and
a drag force. The inertial force involves an added mass
(inertia) coefficient CM which is associated with the fluid
acceleration term, while the drag force employs a drag coef-
ficient CD which is combined with a velocity square term in
that drag component. These coefficients have been determined
from various laboratory and full scale investigations to
depend upon certain fundamental parameters such as the Reynolds
number (Re) and the Keulegan-Carpenter number (KC). A general
discussion of the functional dependence of these coefficients,
together with their use in representing forces on offshore
structures, is given in a number of publication sources, e.g.
[21 and [3].

Since this representation of wave forces has demonstrated
some basic utility in practical applications for the offshore
industry, in spite of certain fundamental objections from
hydrodynamicists due to neglect of various fluid dynamic
mechanisms, it has generally been adopted as the basic procedure
in offshore engineering design studies. This same model has
been used (in an extended form) for the case of moving elements
such as risers, when considering structural vibrations together
with wave-induced loads, etc. Some doubt has been raised con-
cerning the utility of the Morison model when applied to moving
bodies [4], although no definitive conclusion has been reached
due to limited data available for detailed study and analysis.

Another important fluid motion condition where this same
basic method of analysis is used is the case of combined wave
and current velocities, where the current is a steady velocity
flow. In most cases involving field measurements there is no
separation between the current and the wave velocities since
they occur together, and the associated data analysis does not
allow for any distinction of the different contributing effects

of these two different flows. As a result questions then arise
as to the validity of the basis Morison equation model, as well
as the magnitude and functional dependence of these force coef-
ficients in such a model in terms of the various parameters
associated with such a flow field. Some indication of the
effect of a current on the force coefficients for an offshore
structure has been given by Sarpkaya [51, where this effect
has been considered as a partial explanation of scatter inresults of conventional data analysis techniques applied to the

Ocean Test Structure in the Gulf of Mexico (see (61).
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In order to study this problem it is necessary to have
available an adequate set of data obtained in an ocean environ-
ment, as well as a suitable technique for analysis that could
provide the desired force coefficients. A description of the
basic experimental data set, the method of analysis applied,
and the results of the data analysis procedure are provided
in the following sections of this report.
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EXPERIMENTAL DATA

The experimental data set selected for analysis in this
investigation was that from the Ocean Test Structure (OTS)
project in the Gulf of Mexico. A description of the OTS
and the initial basic study associated with that particular
offshore platform is given in [7].

The data measurements obtained on the OTS which are of
interest in the present study are the velocities and forces
measured on a segment of a vertical member placed below the
IWL, in which the force sensor system is included. A descrip-
tion of the coordinate system and sign convention used is
shown in Figure 1, where the angle a represents the direction
in which the waves are propagating. The wave force sensors
are located at the four vertical corner legs at a depth of
15 ft. below the MWL. The forces measured are the x- and y-
components of the horizontal force. The diameter of the
sensor is d=16 in. (nominal diameter) and the length L=2d=32
in. The NW sensor is painted (to inhibit marine growth bio-
fouling) and the SW sensor is unpainted. Most of the data
analyzed here was for the NW sensor, while some information
was also presented for the SW sensor which would reflect some
influence of marine growth in the results. The force coef-
ficients are calculated with respect to the nominal diameter,
with no consideration of any increased effective diameter that
would be caused by marine growth. Current velocity meters
measure the x- and y- components of the horizontal velocity
at points close to the force sensors.

The data was obtained during the winter period 1976-1977,
from which particular waves were selected for analysis. Allof the necessary measurements obtained in the entire test

program are provided on a digitized magnetic tape that wasoriginally supplied by Exxon Production Research Co. (EPR).

The various force measurements were initially filtered, using
an analog 4-pole Butterworth filter having a cutoff frequency
of 3 Hz., and then recorded on magnetic tape recorders. It is
this data that was processed and digitized, with the final
data for all recorded channels provided on the digital magnetic
tape at a sample rate of 10 samples/sec. Thus the digital
information would provide data having validity (in the frequency
domain) up to 5 Hz., without considering any effect of the filter
that could affect responses at frequencies greater than 2 11z.
However such short waves would have no effect on the present
study, and hence the digital records are considered as proper
representations of all of the measured variables.

Wa.
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North (a=QC)
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Fig. 1 Orientation of OTS coordinate system
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The OTS project selected a number of large wave segments of
about 30 sec. length (each) which were to be analyzed for the
1976-1977 winter period. One particular set, denoted as the
Conductor Group Waves (C waves), was comprised of 55 separate
wave segments (30 sec. segments). While analyses were made
for all of these C waves as part of the OTS investigation, it
was found that only the first 38 waves (C-1 to C-38) that
occurred in days 10 and 54 (of the year 1977) were valid measure-
ments for the NW (painted) sensor. The remaining waves in the
C-series, as well as about all of another wave group (s-waves),
gave invalid measurements in that winter recording season due
to zero drifts in the force measurements as well as similar
type problems in the current measurements for the NW sensor.
However, all of the SW force sensor data was valid for the 55
C waves.

Another data set from the OTS investigation contained a
number of separate one hour long continuous records obtained
during the 1976-1977 winter season measurements. Those records
contained similar force and velocity measurements as above,
together with other related measurements in the overall OTS
project. These records, in time history form, were used to
determine various power spectral densities, with the method
of analysis, description of the tape recording format, and
illustrative plots of the results of spectral analysis given
in [8].

Examination of the description of the measurement records
in [8] shows that in only one of the records were there coin-
cident measurements of wave forces and the local wave velocities
at the same location; i.e. at the NW leg element at 15 ft. depth.
In all of the other records the forces were measured at a par-
ticular leg location, while the velocity records were made at
another leg location (SE, across the platform structure) which
was at the same depth (15 ft.) as the force measurement. That
particular type of measurement arrangement would not affect
spectral analysis results, but would have an influence on the
time domain analysis required to determine the Morison equation
force coefficients. It is then necessary to apply an analytical
procedure that corrects for such a separation distance between
the force measurement location and the velocity measurement
location by appropriate "transport" relations (e.g. see [9]).
Experience in [9], as well as other studies involving wave
property transport operations, showed that such operations did
not have a noticeably large effect on any final derived results
(differences of only 2-3%). Thus data from [8], which included
the SW leg force sensor and velocity measurements at the SE leg,
was also available for analysis purposes when applying this
wave property transport operation.
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The particular record that satisfied the requirement of
coincident measurements was identified as corresponding to
wave tape LS8A, with the measurements made on day 54 of 1977.
Thus the coincident measurements at the NW leg in tape LSSA
were then used to select 124 separate 27 sec. long wave seg-
ments for use in an analysis to determine the required force
coefficients. These records from LS8A, together with the 38 C
waves described previously, comprise a data set of 162 separate
records for the painted NW sensor that are available for analysis
purposes in the present study. In addition, in order to provide
a larger set of conditions that would have larger currents as
well as reflect some effect of limited marine growth, data was
also obtained from wave tape SS9 of [8]. That particular data
was obtained on day 63 (March 4) of 1977, with the force
measurements on the SW leg. There were 60 separate 27 sec.
long wave segments selected from tape SS9 for the SW sensor
which were then also used for analysis as part of the present
investigation.

p.-
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GENERAL DESCRIPTION OF ANALYSIS METHOD

The particular method to be applied to determine the force
coefficients is a procedure that has been used to determine the
values of various parameters in a mathematical representation of
the dynamics of an arbitrary system, and has been developed as
a part of modern control theory. This procedure is known as
"system identification," which in the present case is a means
of determining the numerical values of the coefficients that
enter into a set of mathematical equations which are assumed
to represent the dynamics of that system. In addition the
procedure can also determine the suitability of a particular
mathematical form, as well as the sensitivity of particular
outputs to certain coefficients. The values of the coefficients
determined from such an analysis are considered to be the
appropriate numerical values representing the system when they
are found with the same basic values from a number of different
time histories of the basic force, under the same conditions
that characterize each time history, (e.g. Reynolds Number,
Keulegan-Carpenter Number, etc.), which would then insure
uniqueness of these values for those conditions.

What is done in this technique is to obtain the responses
of the system from the force measurements, together with the
elements that are assumed to create these forces such as the
velocity field adjacent to the force measuring element on the
structure. Using the Morison equation as the basic mathematical
model the values for the unknown parameters are then sought so
that the representation of the corce by the model gives a best
fit to the data, where this best fit is defined by minimizing
the mean square error between the computation of the force
using these coefficients (and the recorded velocity time
histories) and the actual force data record itself.

The mathematical procedure used involves the representation
of the basic equation for the force in terms of the unknown
coefficients, and the coefficients themselves are then the actual
variables that are sought. In this procedure it is assumed that
they are constants throughout the time in which the particular
wave and velocity time histories are examined, i.e.,

dC dCM- 0
dt dt (1)

where Equation (1) is the applicable relation for the coefficients
as additional state variables that are subject to the basic con-
straint equation. It is necessary to obtain measurements of other
state variables associated with the force representation in this
method of system identification, and the choice of what has to be
measured is made in establishing the particular investigation
(to be discussed in more detail in the following section).
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There are a number of different procedures of system
identification which can be applied according to whether tran-
sient dynamics or the case where random function time histories
are involved, or the situation where there are measurement
observation errors present. The techniques are quite different
and a general description of procedures used for determining
coefficients of different dynamic systems, under different
operating conditions of interest to naval applications, is
presented in [101. In the present case the method applicable
to random function excitation, including the presence of
measurement noise, would be the most useful for determining
the required coefficient values. The method inherently
includes an on-line filtering procedure together with a
sequential estimation technique which does not require repeating
all calculations after earlier calculations are made, as in
classical estimation schemes. Continuous measurements of the
force system outputs are observed and operated on, together
with the time histories of the measured velocities, leading
to an evaluation of the desired parameters to be generated
as functions of time that readily approach their final steady
value. It is possible that a particular single (individual)
wave time history would not be of sufficient time extent to
allow the coefficients to reach their final values, so that
the overall time history (used in this type of analysis) will
be that for the 30 sec. time period selected for analysis on
the magnetic tape records prepared in the OTS project (cover-
ing more than one individual wave) which is expected to form
an adequate time period for determining the parameters
appropriate to that condition.

The method will be applied to both of the two measured
horizontal force components, using the measured velocity from
the current meters adjacent to each particular force sensor in
the vertical leg which is coated with antifouling paint. The
output of the analysis of this data will provide the appropriate
values of CM and CD that are considered appropriate to each
particular record analyzed in this task. Values of Reynolds
Number and other pertinent parameters influencing these coef-
ficients will also be determined for each wave run, allowing
the force coefficient values to be correlated with these
parameters. The application of this system identification
technique to evaluate the force coefficients for offfshore
structures is a novel extension of advanced technology and
computational procecures that have previously been successfully
applied to vehicle dynamics and control systems. A description
of the mathematical procedures for the sequential estimation
technique applied in this study is given in the following
section.

- . .. ?. ' i L .. , -
.

. ", ,* -. .. ...
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MATHEMATICAL PROCEDURES FOR SEQUENTIAL ESTIMATION TECHNIQUE

When considering the use of system identification for
cases where the observed data is contaminated by noise or if
the system is excited by a random input, the method that is
used is based upon a sequential estimation procedure that is
derived as illustrated below. The basic problem underlying
this system identification technique is that of estimating
the state variables and the parameters in a noisy nonlinear
dynamical system, and this problem is treated in [11], which
is an extension of the simpler problems where only observa-
tion errors occur [121. Considering the scalar case (i.e.
a single state variable), the system is represented by

k = g(x,t) + k(x,t) v(t) (2)

where v(t) is the unknown disturbance input. The measure-
ments or observations of the output are

y(t) = h(x,t) + (measurement errors) (3)

No assumptions regarding the statistics of the unknown input
functions or the measurements error is made. With measure-
ments of the output y(t), for O<t<T, it is required to estimate
x(T) on the basis of minimizing with respect to x(t) (a nominal
trajectory) the functional

J =fT e(t) + w(x,t) e2(t) dt, (4)

0 
l

where w(x,t) is a positive weighting factor, and the errors el
and e2 are defined by

el(t) = y(t) - h(x,t)

e2 (t) = x - g(x,t) (6)

The least squares estimate of x(T), denoted as x(T), is obtained
from minimizing the integral of the (weighted) mean square errors,

where the error e2 (t) represents the difference between a nominal
trajectory and the assumed form of its equation representation.

The minimization problem is then a problem in variational
calculus, which leads to the associated Euler-Lagrange equations
that contain an unknown Lagrange multiplier. The boundary condi-
tions for this Lagrange multiplier are known at the ends of the
interval, i.e. 0 and T, but there is no information about the

. .

- . ., o . q - . •
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value of x(T), and hence the problem reduces to a two point
boundary value problem (TPBVP) that yields the optimal estimate
x(T). With the variable T now considered as a running time
variable, the problem is treated as a family of problems with
different final points, T, and the problem becomes one of se-
quential estimation, i.e the TPBVP must be continuously solved
for all values of T (the running time variable).

The problem is solved by application of the concept of
invariant imbedding []3], which is used to convert a TPBVP
into an initial value problem that can be easily solved. The
missing "initial condition" is represented in a general manner
for different values of T, thereby establishing a family of
problems. On the basis that neighboring processes (i.e. system
responses) are related to each other, the missing condition is
found by examining the relationships between such neighboring

processes. The procedure leads to a partial differential equa-
tion that is solved by an expansion of the solution about the
desired reference condition, which in the present case is the
estimate x(T) (see [111. The result of this invariant im-
bedding approach is a sequential estimator, which is such that
previous data points do not have to be repeated whenever new
observations are added, and hence the estimation operation can
be carried out at a fast computational rate.

The estimator equations for the scalar case are

d - g(xT) + 2P(T)h'(kT) y(T)-h(x,T) (7)

PP= 2P(T)gk(k,T) + 2P . h(i,T) y(T)-h(R,T) P
dT 7

+ 1

2w(R,T) (8)

where

ah(k,T) - (x,T)
hx gx = ax (9)

The above results are somewhat similar to, and represent a
* generalization of the results of linear Kalman filtering [14].

The weighting function P(T) is found from a Riccati-type
equation, and the two equations are solved when given the
initial conditions. The initial value k(0) represents the

. . . .. . .~ ~ . ... . . .. . . . . . . .. .



best estimate of the system state at t = 0, which is based
on available a priori information, and the initial value P(O)
reflects the confidence in the initial value of x and the
observed signal y(t).

The estimator equations for the vector case are derived
in [i] and are given below as

d- g(x,T) + 2P(T)H(x,T)Q Y(T)-h(x,T) (10)

U= g (x,T)P + Pg'x(x,T) + 2PfHQ{Y(T)-h(xT) j P

+ k(x,T)V -1 (x,T)k(x,T) (11)
2

where

ah (x,T)H (x,T)=

s or (12)

symbol represents transpose of matrix), Q is a normalizing
matrix used to weight the observation errors in the minimiza-
tion procedure, the function k(x,T) is a coefficient of the
unknown input forcing function (as in^Equation (2), but for
the vector case), and the function V(x,T) is defined by

V(x,T) = k'(x,T)W(x,T)k(x,T) (13)

with W the weighting matrix for the errors in the basic
equations due to the input disturbances. In the estimator
equatiops the term [IIQ{Y(T) - h(x,T)}] is an nxn matrix
with it h column given by

-- [HQY(T) - T (14)axi H I(

The basic equations of the system and its observations are
similar to those of Equations (2) and (3) but generalized to
the vector case. With x an n-vector, P(T) is an nxn matrix,
s? that the number of equations required to be solved are
n +n which can become a large computational task. Some pos-
sible simplification could occur in some cases where the
P-matrix has symmetry for the off-diagonal terms, depending
on the form of the functions H, Q, etc., thereby leading to
a reduction of the number of equations to be solved.

.r-'-' . . , ' . . " - .- ; . , - . " . - .'. . . .. . - , . .
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In the case where identification of parameters is considered,
the constant (but unknown) parameters, denoted as a vector a
(with m elements), satisfy the differential equation

da
= 0 (15)

and the m elements of a can be considered as additional elements
in the state vector, i.e. they are adjoined to the state vector
elements (z elements) so that n^= Z + m is the total number of
elements in the state variable x, which also includes the
estimates of the m unknown parameters in a. The equations given
in Equation (15) are easily absorbed into the total system
representation in establishing the g-matrix, and the remaining
equations for P readily follow. The only problem resulting from
the introduction of the additional elements is the increase in
the total number of equations to be solved, which increases
the computational complexities. The application of the math-
ematical procedure described here to the problem of determining
the force coefficients of the Morison equation is discussed in
a later section of this report.

I

I.
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DE)T:TI*: MINAT IL)N OP F"OR CE 1'l' Ili:N'l: IN
MORISON EQUATION MODEL

The initial application of this method of system iden-

tification to determine the Morison equation force coefficients
on an offshore structure (OTS) subjected to wave action was
described in [15]. In that case the Morison equation was
expressed for the vector wave force acting on the test section
as

2
dF P D pDz M. rc D 2 u

where df = wave force acting on the axial segment dz of a

cylinder

p = water density

u = fluid velocity

U = fluid acceleration

After substituting g = 32.2 ft./sec., D = 16 in., p = 1.99
slug/ft. 3 and Az - 32 in. into the last equation, it can be
shown that Equation (16) is expressed as

F. = 7.41 CM u + 3.54 CDU uj (17)

for the force component (F and F ) in terms of the velocity
and acceleration componentd, wherX j = x for the south com-
ponent or y for the east component. The resultant fluid speed
u is defined as

u =U + UY2  (18)

and the problem is to find the coefficients CM and CD -

In order to apply this method of system identification
to the present case of the Morison equation, it is necessary
to have a dynamic system that is represented by a differential
equation. The wave force is not part of a "dynamic "system"

4 of this nature, but is only an observable measurement. The
only dynamic system considered proper for this problem was thatfor the velocity field, since the velocity field was measured

and the wave force components are represented in terms of the
fluid velocities (and accelerations), with the force coefficients
included as part of the Morison equation force model.
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The mathematical model for the velocity field was then

represented in the general form

u = f(t) (19)

where f(t) is an arbitrary random function of time. A second
order equation was selected since there are 2 unknown coef-
ficients that have to be determined, and this particular model
also allows for the presence of a current (i.e. a constant
value) as well as an irregularly varying portion in the velocity.
It is this model that was used in the basic analysis of [15],
with the equations structured as shown in the following.

Defining the six state variables

x1 = ',x ' x2 = uy ' x 3 = ux xA = Uy , x 5 = 7.41 CM

x6 = 3.54 CD (20)

the system equations, following the basic model and analysis
given in the preceding section, are

:k = k1v1

2 k 2 v 2

A X3= 1
(21)

x4= x2

5 =0

6= 0

where v and v are unknown inputs. The measurements are made
of the ime histories of velocities and forces, represented by

Yl = observed velocity in x-direction

Y2 = observed velocity in y-direction

Y = observed force in x-direction (22)

Y4= observed force in y-direction

I ° .- , - . . .
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The assumed mathematical model for these measured quantities
is given by the h-vector, with component elements defined by

hI =x 3

h2 =x 4

2=2(23)
h = x+x x +x

4 5 2 6X4 x 3 x 4

where these mathematical models correspond to the particular
measured quantities (y-values) with the same subscript.

The digital computer program is established for solution
of these coupled first order differential equations, correspond-
ing to the estimator equations defined in Eqs. (10) - (14).
They are nonlinear and time-varying, in general, and the
technique for solution is based upon use of a Runge-Kutta fourth
order integration scheme. The integration time step is given as
input (in the program) and can be less than the measurement
interval (0.1 sec.). The value of time step to be used in inte-
gration would depend upon requirements of stability, total time
of solution, etc. All of the computer operations for a general
equation system are carried out in matrix form, as indicated by
the representation of the equations given in a preceding section,
and various subroutines to make use of matrix manipulations are
employed which are standard procedures associated with digital
computer operations. The results of application of these equa-
tions for determination of the force coefficients in Morison's
equation are discussed below, together with additional informa-
tion on numerical values and procedures in the computations.

The velocity and force have different numerical magnitudes.
It is important to choose appropriate weighting matrices of Q
and W (or V) in order to get stable results. The following
weighting factors were adopted for the calculation:

10 1

= .0005 (24)

0 .0005

0 .. .. . ,.
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100

100
KV K'= 0 (25)

20
S0

The matrix Q represents the inverse of the observation
errors, by analogy to the form of Kalman filtering (see [14]
and [16]), and it is assumed that the observation errors are
generally small for the fluid velocities. The Morison equa-
tion model is a "fit" to the actual force, so that it is ex-
pected that there would generally be a more significant error
in that type of model relative to the actual force, which in
the present context would thereby be a larger "measurement
error". Thus the basis for the indicated values of the diagonal
elements in the Q-matrix in Equation (24).

The matrix representing KV K' in Equation (25) cor-
responds to the random forcin function in the differential
equation for the state variables. Since thcre is a random
forcing function for the state variables x1 and x , the equa-
tions for x and x are exact according to the basic model,
and the variables A and x are considered to be constants in
the present analysiR, then the values given in the diagonal
matrix elements in Equation (25) represent that situation. The
particular values used in these matrices shown in Equation (24)
and (25) are also based upon values indicated in the work of
[10] and [111, as well as upon the results of stability and
convergence of the equations when carrying out numerical
experiments (related to the work reported in [151).

The initial velocity value estimates can be assumed to be
equal to the measured velocities. The matrix P and the final
value of the force coefficients are fed back as initial con-
ditions after each 30 sec. record period, with each 30 sec.
record period being used as many times as necessary to arrive
at final converged values of the force coefficients together
with good "tracking" of the estimated values of velocities,
force components, etc. as compared to the actual measured
values. Each use of a 30 sec. record length during the analysis
of that particular wave record and associated measurements is
referred to as an "iteration" in the analysis procedure used in
the work of [15]. Convergence tests of the estimated force
coefficients illustrate the effective asymptotic convergence
to the final coefficient values after a number of iterations,
as shown in Figure 2. The final values at the final iteration
run shows that the force coefficient values are just about
constant throughout the 30 sec. record (see following discussion).

w

* * . . .. . * . * * -..- . . . * . .*
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Fig. 2 Variation of CD with no. of iterations, C-45 record.

An example of the correspondence between the measured data
and the estimated results obtained by the system identification
procedure, as reported in [15], is shown in Figures 3 and 4,
where the instantaneous C and C values are used to calculate
the estimated forces. Th value of CM and C in that same 30
sec. period are presented in Figure 5 and demgnstrate that these
numbers are fairly constant, which is the nature of the results
indicated in other applications of system identification (see
[101 and [111). The results obtained here indicate that the
present system identification technique, when applied to determine
the Morison equation force coefficients, can provide a valid result.

' %,_"." % • , 

..
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The method employed here, and illustrated by the results
in Figures 2-5, exhibits certain features that can be con-
trasted with results found by other methods of analysis (e.g.
[6]). Observation of the time histories of the velocities,
forces, etc. as estimated by the identification method, when
compared to the measured values, indicate how well the esti-
mated variables "track" the actual measurements. This type of
output and comparison in on-line form is directly obtained in
the present analysis, which provides a measure or check on the
utility of the method. The basic method inherently contains
an on-line filtering action which provides an optimum filtering
of the measured velocities and forces so that extraneous effects
are eliminated. Thus there is no need to apply separate (and
subjectively selected) filtering to the measured data before
applying any analysis procedures. Another feature of this
method is that the optimum accelerations are also provided by
the appropriate state variable estimates, which eliminates the
need for direct differentiation, introduction of large noisy
signals, filtering procedures, etc. that would ordinarily be
required by conventional procedures. The present analysis
technique is applied to the entire 30 sec. wave record (and
associated measurements) rather than to a limited wave segment,
and the values of CM and C found for each wave record are
appropriate to the entire iime histories given in each record.

Application to Combined Wave and Current

The procedure described above was developed and applied
to cases of wave velocity disturbances, with the illustrations
given in Figures 2 - 5 as representative of the results ob-
tained by this method (see [15]). For the case where a steady
current is present together with the wave flow field, another
mathematical model that represents a generalization of the
basic Morison formula is generally used in the offshore in-
dustry. In that case the velocity is defined in terms of the
separate current and wave velocity summed, i.e.

u -*u + u'x x x
0

(26)
u 41 u + up

uy ~y +u
Y 0 Y

where the o-subscript represents the current componet and the
primed (') terms represent the time-varying wave velocity com-
ponent. Since the currents are steady there is no effect on
the acceleration, with the acceleration terms only due to the
time-varying flow components.

"Q

' "" " .-I, ' . . -.- '' .
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With the current values as known quantities, the state
variables are defined in a similar manner as the previous
case; i.e.

xI = ' x x ' x4 = u
t

1y '3 4 4

(27)

x = 7.41 CM , x6 = 3.54 CD

The system equations are also essentially the same as in
Eq. (21), but using the primed variables. The assumed
mathematical representation of the measurements are given by

h x 3 , h2 = x4

(uux +3
h= x 5 X + x+(u +xx) 2 +(uy + x4 ) 2o o (28)

4 5x2 x 6 Uy 4 )  (Ux+ x 3  + Uy x 4)

with each of these Imodels corresponding to the measured
variables yl - Y4 "

The g-function (defined in Eq. (2) and its generaliza-
tion to the vector case) for this case is the same as the
previous case of only wave velocities, and the other necessary
matrix quantities used in the identification-estimation
procedure were also determined. The H-matrix, defined in Eq.
(12), is a 6x4 matrix here as in the previous case, with
similar type elements. Since the current values are known,
the time-varying part of the measured velocity is determined
by simple subtraction so that it can be compared to the state
variable estimate, etc., as required in the present identifica-
tion procedure. However, a detailed examination of all of the
equations, the matrix element terms, etc. shows that the only
change in this system is the replacement of the velocity
definition given by Eq. (26) for the basic velocity terms.

Thus the quantity (ux + x3 ) appears in every matrix element

term here instead of x3 in the original case, with similar
replacements for the x3 variable, etc. If the original
variables are redefineA to include the current values then
the present set of equations reduces exactly to that for the
case treated in [15]. As a result there will be no difference
in any of the force coefficient values found by the analysis,
whether a current is considered or not, for any particular
27 - 30 record wave segment that is analyzed, i.e. the same
force coefficients, degree of force time history matching,
etc. will be found.
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In order to establish a mathematical model that could
possibly reflect the influence of currents in a more direct
manner, the equations were reformulated in order to consider
the current values as unknown constants that were to be
found. The state variables are then defined as

X1  2= 'x 3  U'x 4 =u , x 5 =7.41 CM,

6  3.54 CD  x7  ux  ,x 8  u (29)
0 0

and the system equations are
= kv '1 A2 = k2v2  x2 = Xl ' = 2

A5 = 0 , x6 = 0 , A7 0 8 = 0 (30)

The matrices in the identification - estimation equations
extend up to 8x8 in this case, as compared to 6x6 in the
original system. All of the necessary operations to establish
these equations were carried out and the computer program also
established for this case.

Some wave segments were selected for analysis and the
original method applied in order to obtain values of the
Morison equation force coefficients by means of the basic
identification procedure described previously. These cases
provided satisfactory matching of the measured forces and
velocity time histories when applied to cases for the painted
NW sensor, which indicated that the procedure was functioning
properly. Attempts were then made to apply the mathematical
model based upon the relations in Eqs. (29) and (30) to the
same wave records, in order to determine the unknown force
coefficients as well as the values of the current components
in that mathematical model. A number of different attempts
were made and it was found that the solutions did not behave
properly, causing numerical overflow (i.e. "blowing up") as
well as not tracking the measured data. This behavior was
exhibited in the early time period of the solution, thereby
indicating the existence of a significant problem.

A number of different computer experiments were attempted,
all leading to the same basic result of numerical overflow.
A detailed examination of the program did not reveal any errors,
leading to an examination of the fundamental equations that were
structured for this case, i.e. as shown in Eqs. (29) and (30).
It can be seen from an examination of all of the associated
operations in establishing the equations that the combination
(x 3 + x7 ) always appears together and similarly the combination
(x + x ) also appears together, with each term essentiallyre~lacigg the quantities x and x4 , respectively, from the

3 4'
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original equations. It can also be seen that the equation
* = x can be replaced by (A3 + x7) = x1, with a similar
rhlati~n involving (x4 + x8 ).

What this means is that the equation system described
by Eqs. (29) and (30) can be easily changed to be equivalent
to that in Eqs. (20) and (21) by a simple linear operation,
thereby indicating that the two equation systems are not
linearly independent. As a consequence it is not possible
to obtain a solution using the new equation system formula-
tion since the equations for x and x are essentially
redundant. Thus the only procedure cosidered applicable is
to use the original system as a means of determining the
force coefficients C and C , with the understanding that
any effects of a current wiI be determined as a parametric
dependency in the coefficient values. Such a result, when
accompanied by good matching of the experimental measurements
together with an indicated set of constant coefficients, shows
that the Morison equation model would be valid for the case of
a current combined with wave disturbances. However, it would
be expected that the influence of the current would manifest
itself in possibly altering the coefficient values as compared
to the case when no current was present, but that will have to
be determined by means of data analysis applied to the results
obtained following the identification procedure.

L

V
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DIMENSIONAL ANALYSIS OF FORCE CUEFFICIENTS

The system identification procedure described previously
will be applied to determine the numerical values of the force
coefficients in the Morison equation model, for each case that
is considered. however there is no indication of the basic de-
pendency of such coefficients on various physical parameters
that characterize the general flow phenomena, when using that
method. The most useful means of determining the dependence
of the force coefficients on various physical parameters is
by the use of dimensional analysis, which will indicate the
dependence on various sets of dimensionless parameters that
have been evidenced in other studies of wave forces on off-
shore structures.

As an initial simple illustration, the case of a single
in-line resultant velocity approaching a cylindrical vertical
element structure is considered. The force is represented by
the relation

O2

F = C -- Ln + C -DLulu (31)
M4 D2

Wvhere L is the length of the cylindrical element and all of
the other terms have been generally defined previously. The
physical parameters on which the force depends are listed
below: u ,u, D, o, w, T, H, g, E, where

u = current velocity

u = wave velocity

Z = fluid viscosity

T = wave period

H = wave height

g = gravity acceleration

= roughness size

Considering a product form of representation for each
component term of the force expression in Eq. (31) leads to
the expression

P. Kur i D p jT(32)
M 4 o

.. , .. . . , , . . * .. ;" i .; ; .. ; - ; ;



26

for the inertial component of the force, where K is a constant.
Using the basic dimensions of force, length and time (F,L,T
system) for each physical parameter on the right hand side of
Eq. (32) results in three basic equations for the different
powers of the basic dimensional quantities (F, L, and T). These
equations are:

1 = d+e
0 = a+b+c+g+h+i-4d-2e (33)

0 = 2d+e+f-a-b-2h

Combining these equations lead to relations in terms of a
reduced number of variables, which then result in the expression

2 2 e_ a e uT f (H)g u)h(D) iC TD I - u D(2 -)u
M 4 u pDu D D u (34)

or

u 2 u_ a -e fH)g -h (D) i (35)CM =KI (Re) (KC (Fr)

where

K1 is a constant

Re- Du
Re = Reynolds number

uT
KC = - - Keulegan-Carpenter number

D

Fr - - Froude number
gD

The functional representation for the inertia coefficient CM
is then given by the expression

u2  u H (
C =-f ( ReKC, FrD) (36)

2
where the initial functional coefficient u is some type of

is H
"Froude number" based on the fluid acceleration, f is an alter-

nate representation of the KC number (evaluated at the free

surface), and L is a measure of the relative roughness.
D

- - ...- •- *.-!'- '" "'" .'. / . .--a .........---.-- ......-..... ...--................"."..--........
- - .- ..".......'.'......... ............... ".-.. "... ".. -" "j
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The analysis of the drag force component then follows from
the basic relation

CD2DLuIu= KabDCpvefggh (37)

which yields the following equations for the powers of the three
fundamental physical variables (FLT); viz.

1 = d+e

0 = a+b+c-4d-2e+g+h+i (38)

0 = -a-b+2d+e+f-2h

Combining these relations and establishing the rtinent dimen-
sionless parameter quantities results in

CD = f2(HO ,Re,KC, Hr,. )  (39)
D L 2 uD D

As a result of the dimensional analysis shown here, the
force coefficients CM and CD from the Morison equation model are

shown to be functions of the ratio of the current magnitude to
the wave velocity amplitude; the Reynolds number; the Keulegan-
Carpenter number; the Froude number; the ratio of wave height to
diameter; and the relative roughness ratio. The particular func-
tional form is not specified, nor is the degree of dependence on
each dimensionless parameter indicated. However, this basic de-
pendence on these specific parameters will allow some means of
plotting the numerical values obtained from the system identifica-
tion analysis in a form that would exhibit some type of consistent
variation, assuming that such a consistent dependence was exhibited
by the data.

If the basic mathematical model was represented in the form

2
F = CM D4 + C - DL(u +u)lu +ui (40)

M 4D 2

the same relation as Eq. (36) would be found for the inertia co-
efficient C.. The equation for the drag coefficient CD would be
similar to hat in Eq. (39) except for an additional multiplying
constant of the form

U2

(u+U) u0+uI (41)

' "- - 0 ' .. ., . ., - , . -
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which can be seen to just be an additional manifestation of the
dependence on the parameter u 0. Thus, even if the basic force

u
eauation was represented in the form of Eq. (40) to include the
presence of the current in a direct manner, the basic functional-
dependence of the drag coefficient CD would not be altered in a
significant manner. D

In the present case of two component wave velocities in the
horizontal plane, for a vertical leg element of length L, the
Morison force equations are represented by Eq. (16) - (18) with
the inclusion of the multiplying length factor L. The same
type of dimensional analysis procedure can be applied to that
model, where the basic physical variables are expanded to include
the separate component terms such as u , u , ux , Uy, etc.; x0 Yo

Considering the x-component force expression, for the iner-
tial force portion initially, the same type of dimensional
analysis procedure leads to the relation

u= )u u
L f3 xu , u Y ,Re x KC x Frx (42)

x x x x

where Rex, KCx, and Frx are defined in terms of the velocity

component ux. The drag force component of the x-force can be

shown to be represented by

S D u (u) Y , _ , Rex, KCxH,Fr O
C 2L u u u x D y ) (43)

u +u X x Xx y

Applying these same methods to the y-component force re-
sults in

F. 2
u u u u

__ __KC FrLU 5 u u u y y D' y'D (44)
y Y y y

and
ux  u

u y( 0 , Y u K H , r
C U U Y , x, Re KC , Fr , ) (45)

D 2 2 6-u u u
u + I y y yx y

- I. - l
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where Rey, KC , and Fry are defined in terms of the velocity

component uy

A reduction in the parameters for the dependency of the
inertia and drag coefficients can be achieved by means of apply-
ing physical reasoning as well as other simple relationships.
Since these force coefficients should not be dependent only on
the component of velocity associated with the particular direc-
tion of the force from which the basic relationship was obtained,
the basic dependence is really exhibited in terms of resultant
velocity cquantities. However there is also an indicated depend-

u 2
ence on the ratio In addition the quantity u-7 (or its

Y uU
y

inverse) can be represented, by means of the relation A n

which is applicable to a purely oscillatory function (in terms
of the amplitudes of the respective quantities), so that

- ! !- which is another type of Keulegan-Carpenter number.

On the basis of the above reasoning it can be seen that the
Morison equation force coefficients are generally a function of
the following parameters:

RF D o x

ReKCFrD' L' D' u 'u

y

with the first three quantities defined in terms of the re-
sultant velocity (as in the definitions following Eq. (35) above).
Some of these parameters can also be combined further to reflect
the dependence on the parameter a=Re/KC, which has been used as
a basic dimensionless parameter for many wave force investiga-
tions (e.g. see [3]). Another relation that is possible is the
parameter defined by

u uT
0-2KC _ o -V R  (46)

u D R

which is the Verley-Moe coefficient reflecting the influence
of the current present together with an oscillatory flow (see
[17]).

The dimensional analysis procedure described above outlines
the basic parameter dependency that may be exhibited by the
coefficients determined in the present investigation. The degree
of dependence of those resulting coefficients will be exhibited
in terms of some of these quantities in order to gain insight
and understanding regarding their possible use for conditions
other than those from the data set that was used in this study.

U * * - ** •.. • - •
F * d i i ni :, i ', ' * "
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RESULTS OBTAINED AND DISCUSSION

The system identification procedure described previously
in earlier sections was applied to the various 27-30 second
records selected for analysis. These records were C-i through
C-38 from the C wave group of separate wave segments; a group
of 124 records (27 seconds long, each) obtained from the total
wave record tape LS8A; and a group of sixty 27 second long
records selected from wave record tape SS9. The C wave records
and those from LS8A were obtained from measurements of both the
wave velocities and the forces at a vertical leg element (at 15
ft. depth) of the NW leg of the OTS, which was painted with anti-
fouling paint. The records from SS9 contained force measurements
at the SW leg of the OTS (an unpainted element), with the veloci-
ties measured at the SE leg and transported via mathematical
operations reflecting the proper phase shift properties according
to the procedure described in [9].

As was discussed in an earlier section, the method of
analysis used for measured data where a current may be present
is the same as that for the case with no current (i.e. [15]).
The only differences due to the current influence would be
manifested in a parametric manner for the coefficients, and that
will have to be determined from an analysis of the Morison equa-
tion force coefficients in regard to their dependence on various
dimensionless parameters.

Representative examples of the correspondence between the
measured data and the estimated results obtained by the system
identification procedure applied to the present data set are
shown in Figures 6-9, where the instantaneous CM and CD values

are used to calculate the estimated forces. The values of these
coefficients, which are essentially constant throughout the 27-30
second time extent of each record, are also illustrated in these
figures. These results are essentially similar in nature to
those found in [15] and [9], with good "tracking" of the measured
velocities and forces by the estimates from the identification
procedure together with constant force coefficients. Thus the
present system identification technique, when applied to determi;,e
the Morison equation force coefficients for cases where a current
is present, can also provide valid results for such cases.

In the present case a definition for the Reynolds number (Re)
and Keulegan-Carpenter number (KC) is established for any wave
record in terms of the average value of the maximum resultant
velocity for the trough and crest of the velocity. These parameters
are calculated from the relations
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1 D + (u
Re = (trough) crs (47)

_K 1 T (U trough) + (U crest) (8
2 D max max]

These definitions are used in order to present variations of
the force coefficients CM and CD as functions of these basic

dimensionless reference numbers, which can also be contrasted
with the results obtained in other studies (if desired).

Tabulations of the result for the force coefficients CM

4 and CD found by application of the present system identification

technique are given in Tables 1-3, which present the force coef-
ficient values and related parameter values for each of the
wave data groups analyzed here (C-waves, LS8A, and SS9). In-
cluded in these parameters are the ratio of the current velo-
city to the wave velocity, where the wave velocity is the
average value defined in Eqs. (47) and (48) in terms of trough
and crest values. The current value, denoted as uo, is the

resultant current, just as the wave velocity is the resultant
wave velocity defined in Eq. (18). There is no dependence on
any angular effects due to the lack of any direction dependence
for each of these velocity quantities. Thus the effect of the
dominant angle of wave propagation is not manifested in any
manner in the present results.

The resultant current magnitude for the C-waves ranges
from .04-.19 ft./sec. (with only 2 wave segments 1-,-ing that

4 larger current value within the 38 C-wave records while the
current for the LS8A waves is .17 ft./sec. for all of the wave
segments. The current magnitude is much larger for the SS9
wave segments, with a value of .77 ft./sec. applying to all of
those records. The current values were found from available
hourly summary tape records from the OTS records for the C-
waves, where these hourly summary values are mean values obtained
from 20 minutes averages found every hour during the data-record-
ing time. The current values for the LS8A and SS9 wave segments
were found as the mean values of the respective one hour record
for each case.

In order to illustrate the variation of the force coeffi-
cients CM and CD with different parameters, some graphs showinq

I.
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TABLE 1

Force Coefficient Values Obtained From
System Idenfication Procedure

(C-waves, NW corner, painted sensor)

-5-CM CD Uo/u VR
Wave RexlO KC BxlO - -D

C-1 4.97 18.3 27.2 2.11 1.46 .017 31

C-2 3.84 13.6 28.2 2.14 1.59 .023 :31

C-3 3.84 15.3 25.1 2.08 1.55 .023 .35

C-4 4.68 17.7 26.4 2.07 1.26 .018 .32

C-5 3.57 13.0 27.5 2.06 1.50 .024 31

C-6 4.97 21.5 23.1 1.97 1.30 .017 37

C-7 4.02 14.9 27.0 1.95 1.25 .012 18

C-8 5.74 25.3 22.7 2.14 1.23 .009 .23

C-9 4.55 16.7 27.2 2.05 1.15 .011 .18

C-10 4.90 22.1 22.2 1.92 1.13 .010 .22

C-11 3.76 15.8 23.8 2.10 1.35 .013 .21

C-12 4.02 21.8 18.4 2.05 1.36 .031 .68

C-13 4.51 21.9 20.6 2.06 1.19 .027 .59

C-14 3.60 12.1 29.8 2.05 1.32 .033 .40

C-15 4.88 22.8 21.4 2.09 1.07 .025 .57

C-16 4.88 19.3 25.3 2.08 1.08 .025 .48

C-17 4.84 24.9 19.4 2.00 1.10 .028 .70

C-18 7.16 32.6 22.0 2.30 1.08 .019 .62

C-19 5.13 26.2 19.6 2.14 1.05 .024 .63

C-20 6.13 28.2 21.7 1.92 .88 .022 .62

C-21 5.82 17.9 32.5 2.03 1.26 .023 .41

C-22 6.14 29.7 20.7 1.91 .93 .022 .65

C-23 6.14 28.5 21.5 1.85 .94 .022 .63

C-24 7.4 38.5 19.2 2.26 .88 .018 .69

C-25 5.64 27.9 20.2 1.97 .99 .042 1.17

C-26 5.25 27.3 19.2 2.15 1.04 .045 1.23

C-27 6.16 33.6 18.3 2.11 .86 .024 .81

C-28 26.3 32.3 19.3 2.24 1.05 .024 .78

C-29 7.04 39.1 18.0 2.36 .87 .021 .82

C-30 6.46 36.3 17.8 2.03 .74 .023 .83

C-31 5.95 32.9 18.1 2.04 .74 .025 .82

C-32 6.05 26.6 22.7 2.16 .77 .025 .67

C-33 5.75 23.2 24.8 2.18 .86 .026 .60

C-34 6.56 32.8 20.0 2.19 .75 .023 .75

C-35 5.59 31.5 17.7 2.17 .91 .026 .82

C-36 8.08 40.6 19.9 2.46 .84 .018 .73

C-37 7.97 44.3 18.0 2.55 .96 .018 .80

C-38 6.23 35.0 17.8 2.45 1.15 .024 .84

I

I."-
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TABLE 2

Force Coefficient Values Obtained From
System Idenfication Procedure

(LS 8A waves, NW corner, painted sensor)

- 5 -C3 CD VWave RexlO KC ex.O0 M o/u __R

001 2.17 10.1 21.5 2.09 1.00 .097 .98
002 3.50 12.8 27.3 2.14 0.88 .060 .77
003 2.12 7.4 28.6 2.23 1.39 .10 .74
004 1.52 6.0 25.3 2.18 1.08 1.39 .83
005 3.37 11.6 29.1 2.24 1.38 .063 .73
006 2.99 16.9 17.7 2.16 .97 .071 1.2
007 2.53 7.1 35.6 2.22 1.09 .083 .59
008 2.34 10.1 23.2 2.18 1.13 .090 .91
009 2.19 6.93 31.6 2.13 1.33 .096 .67
010 2.92 24.8 11.8 2.14 .93 .072 1.79
Oil 5.89 30.1 19.6 2.26 .84 .036 1.08
012 2.59 9.8 26.4 2.35 1.14 .081 .79
013 2.49 12.9 19.3 2.26 1.03 .085 1.10
014 3.3 17.1 19.3 2.18 .96 .064 1.09
015 2.31 9.7 23.8 2.15 1.30 .091 .88
016 2.97 17.4 17.1 2.11 .90 .071 1.21
017 2.46 10.9 22.6 2.21 1.05 .086 .94
018 5.6 27.8 20.1 2.12 1.07 .038 1.06
019 4.02 21.3 18.0 2.11 1.02 .052 1.16 -

020 2.78 13.9 20.0 2.18 1.20 .076 1.06
021 2.57 11.2 22.2 2.17 1.04 .082 .92
022 3.29 17.2 19.1 2.28 .81 .062 1.10
023 3.73 20.8 17.9 2.13 .97 .057 1.19
024 3.40 18.3 18.6 2.23 .99 .062 1.13
025 2.26 11.1 20.4 2.20 1.16 .093 1.03
026 3.24 16.1 20.1 2.15 .77 .065 1.05 .'
027 4.32 19.0 22.7 2.17 .87 .049 .93 *$
028 2.76 14.1 19.6 2.11 .84 .076 1.07.
029 3.46 16.0 21.6 2.31 1.23 .061 .98
030 2.36 8.2 28.8 2.28 1.23 .098 .73p
031 1.91 6.0 31.8 2.25 1.33 .11 .66
032 4.07 15.9 25.6 2.20 1.03 .052 .83
033 2.30 8.2 28.0 2.18 1.06 .092 .75
034 3.12 12.8 24.4 2.14 .99 .068 .87 .

035 3.51 18.3 19.2 2.13 .82 .060 1.10'-
036 2.71 12.8 21.2 2.13 1.00 .078 1.0 6
037 2.07 7.4 28.0 2.18 1.28 .102 .751
038 2.28 10.9 20.9 2.17 1.00 .093 1.01
039 3.17 15.4 20.6 2.23 1.11 .067 1.03 j
040 2.45 9.9 24.7 2.22 .95 .086 .85.
041 3.22 15.9 20.3 2.13 .96 .066 1.05j
042 2.84 13.3 21.4 2.16 1.07 .074 .98
043 4.9 24.1 20.3 2.24 .94 .043 1.04.,
044 2.94 12.3 23.9 2.12 .89 .072 .89*,:

045 2.46 10.7 23.0 2.16 .82 .086 92

A

. '. . .- .. . . . .. . .. - .. ,- . . ... . - ... . . .. , - -. .
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TABLE 2 (continued)

-5 5- CM CD VR
Wave Rex10 KCC C x1_0 /u R

046 2.56 10.4 24.6 2.12 .88 .082 .85
047 2.31 8.5 27.2 2.19 1.04 .091 .77
048 2.98 11.0 27.1 2.12 .99 .071 .78
049 2.99 14.6 20.5 2.13 .99 .071 1.04
050 4.42 16.7 26.5 2.08 .95 .048 .80
051 2.43 9.4 25.9 2.25 1.18 .087 .82
052 1.92 6.5 29.5 2.05 1.02 .110 .72
053 4.14 20.1 20.7 2.32 1.68 .051 1.03
054 3.38 21.5 15.7 2.24 1.08 .062 1.33
055 3.76 17.6 21.4 2.10 1.00 .056 .99
056 3.70 17.9 20.7 2.04 1.01 .057 1.02
057 1.46 7.2 20.3 2.21 1.20 .145 1.04
058 2.96 16.2 18.3 2.26 1.03 .086 1.39
059 3.33 15.4 21.6 2.17 1.00 .063 .97
060 4.25 22.5 18.9 2.24 .86 .050 1.13
061 3.56 18.4 19.3 2.20 .89 .059 1.09
062 2.98 12.9 23.1 2.16 .88 .071 .92
063 2.42 10.1 24.0 2.10 1.20 .087 .88
064 3.97 18.5 21.5 2.11 .96 .053 .98
065 2.48 11.0 22.5 2.14 1.08 .085 .94
066 3.39 15.2 22.3 2.08 .92 .062 .94
067 2.78 10.3 27.0 2.22 .89 .076 .93
068 3.09 IT.9 26.0 2.14 .73 .068 .81
069 2.42 9.7 30.1 2.10 1.00 .072 .70,
070 3.21 11.4 28.2 2.19 1.07 .066 .75
071 4.21 15.5 27.2 2.10 .93 .050 .78

072 3.87 16.2 23.9 2.08 .90 .055 .89
073 2.69 10.2 26.4 2.15 .90 .078 .80
074 3.44 18.3 18.8 2.10 .70 .061 1.12
075 3.22 15.7 20.5 2.09 .72 .066 1.04:-
076 4.31 21.9 19.7 2.18 .62 .049 1 .07.
077 1.9 6.8 27.9 2.09 .68 .111 .75.
078 2.58 9.0 28.7 2.17 .92 .082 .74".
079 3.14 15.6 20.1 2.04 .57 .067 1 .05
080 1.63 6.4 25.5 2.19 1.05 .129 .830
081 4.35 21.8 20.0 2.18 .97 .049 1.07-
082 2.27 9.2 24.7 2.20 1.04 .093 .86--
083 3.28 16.0 20.5 2.11 .85 .064 1.02:
084 3.85 18.9 20.4 2.04 .84 .055 1.041
085 2.82 9.2 30.7 2.24 1.25 .075 .69
086 2.41 13.4 18.0 2.15 1.04 .088 1.18.
087 2.76 11.5 24.0 2.05 .71 .076 .87",
088 2.61 9.2 28.4 2.18 .68 .081 .75:
089 1.73 6.7 25.8 2.22 .95 .122 .82:-
090 2.80 12.6 22.2 2.19 1.06 .075 .95
091 3.54 19.4 18.2 2.28 .94 .060 1.16i
092 2.55 11.8 21.6 2.08 .88 .083 .98.
093 3.39 10.8 30.6 2.10 .75 .064 .69-
094 4.12 20.5 20.1 2.05 .62 .051 1.05' "

095 3.52 13.9 25.3 2.21 .86 .060 .83:

p.
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TABLE 2 (continued)

Wave RexlO 5KC a,3C M C D U0 /u VR

096 2.10 7.1 29.6 2.17 1.02 .100 .71
097 1.98 6.6 3.0 2.18 .87 .107 .71.

098 2.36 8.2 28.8 2.03 .71 .089 .73]
099 2.16 10.0 21.6 2.09 .97 .098 11
100 3.22 16.3 19.8 2.19 .96 .066 1.08
* 0 .1 09 20.0 2.18 .90 .051 1.07

102 6.6513. 20. 0 2.00 .64 .032 1.07
* 0 .7 05 26.2 2.12 .95 .077 .81

104 2.01 70.357. 2.23 1.02 .105 .77
105 2.77 12.0 23.1 2.16 .76 .076 .91
106 2.50 7.8 32.1 2.12 .71 .084 .66
107 3.15 16.0 19.7 2.26 .96 .067 1.07
108 2.48 7.7 32.2 2.24 .89 .085 .65
109 3.49 15.2 23.0 2.19 .95 .060 .91
110 2.40 10.3 23.3 2.19 .74 .088 .91
ill 2.37 14.2 16.7 2.16 .90 .089 1.26

*112 3.22 17.0 18.9 2.12 1.04 .066 1.12
113 5.77 25.6 22.5 2.24 .87 .037 .95
114 3.62 18.2 19.9 2.23 .9r% .058 1.06

*115 4.10 24.5 16.7 2.15 .85 .051 1.25'
116 3.78 17.8 21.2 2.25 .84 .056 1.00.
117 2.07 10.5 19.7 2.19 .78 .102 1.07,
118 3.40 17.6 19.3 2.15 .77 .062 1.091
119 2.46 7.9 31.1 2.20 .98 .086 .68.

*120 1.74 6.9 25.2 2.18 .76 .121 .83-
121 1.36 3.6 37.8 2.18 1.00 .155 5
122 3.25 17.3 18.8 2.14 .87 .106 1.12:
123 3.2 12.2 26.2 2.18 .68 .066 .81

*124 2.6 16.4 15.9 1.99 .61 .081 1.33.
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TABLE 3

Force Coefficient Values Obtained From
System Idenfication Procedure

(SS9 waves, SW corner, unpainted sensor)

-5 -3VR.
_CM CD Uo, _Wave RexlO KC ax1.0 _ M D U/u R

01 3.21 16.9 19.0 2.02 1.39 .296 5.0
02 3.70 20.96 17.7 2.34 1.25 .257 5.4
03 2.75 14.9 18.5 2.13 1.32 .346 5.2
04 2.87 16.5 17.4 2.14 1.21 .331 5.5
05 3.0 13.8 21.7 2.26 1.80 .317 4.4
06 3.05 14.4 21.2 2.56 1.75 .310 4.5
07 6.11 31.5 19.4 2.46 1.5 .156 4.9
08 2.80 16.9 16.6 2.28 .85 .338 5.7
09 2.74 14.2 19.3 2.19 1.49 .347 4.9
10 2.8 12.1 23.1 2.12 .72 .341 4.1
11 2.82 17.8 15.8 2.10 1.01 .336 6.0
12 3.34 17.7 18.9 2.15 .96 .285 5.0
13 3.05 15.6 19.6 1.98 1.19 .311 4.9
14 3.16 24.2 13.1 2.39 2.40 .300 7.3
15 3.06 16.1 19.0 2.29 1.46 .310 5.0
16 2.96 17.3 17.1 2.15 2.00 .321 5.6
17 3.14 16.2 19.4 2.33 1.48 .303 4.9
18 3.63 2.13 17.0 2.04 1.29 .262 5.6 1
19 4.80 27.6 17.4 2.13 1.52 .198 5.5
20 4.39 2.14 20.5 2.19 1.54 .219 4.71
21 3.55 17.2 20.6 2.10 1.52 .267 4.6
22 3.29 22.1 14.9 2.35 1.76 .289 6.4
23 4.79 27.8 17.2 2.51 1.56 .198 5.5 9
24 4.42 24.7 17.9 2.24 1.44 .215 5.3
25 3.72 22.0 16.9 2.14 1.24 .255 5.6
26 2.33 15.5 15.0 2.66 1.86 .408 6.3
27 2.79 19.1 14.6 2.2 1.32 .359 6.9
28 2.56 19.4 13.2 2.22 1.21 .371 7.2

* 29 2.75 11.3 24.3 2.12 1.35 .346 3.9 1
30 2.87 20.6 13.9 2.31 1.76 .331 6.8
31 2.78 14.6 19.0 2.14 1.70 .341 5.0
32 2.61 19.8 13.2 2.23 1.23 .364 7.2
33 2.81 29.1 9.7 2.12 1.68 .335 9.7
34 5.04 24.3 20.7 2.34 1.76 .188 4.6
35 2.49 19.8 12.6 2.20 1.50 .383 7.6 1
36 2.72 13.9 19.6 2.05 .98 .348 4.8
37 2.49 10.6 23.5 2.12 1.42 .382 4.0
38 2.85 14.5 19.7 2.18 1.18 .333 4.8
39 2.97 16.3 18.2 2.13 1.64 .320 5.2
40 1.85 12.0 15.4 2.14 1.34 .520 6.2

. **. - - - " .. * .. - . . . • . - , . . , j ' _ . - - . .
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TABLE 3 (crnt

-5 -3 c_°

Wave Rexlo KC xlO U/

41 3.65 18.0 20.3 1.46 .261 4.7

42 3.10 20.2 15.3 1.22 .307 6.?

43 2.79 13.6 20.5 2.07 1.26 .340 4.6

44 2.77 15.3 18.1 2.22 1.64 .343 S.2

45 3.08 18.2 16.4 2.07 1.20 .309 5.8

46 2.32 14.7 15.8 2.03 1.10 .410 6.0

47 2.57 10.5 24.5 2.06 1.12 .370 3.9
48 3.15 10.9 28.9 2.19 .185 .302 33
49 4.60 21.3 21.6 2.11 1.16 .207 44

50 2.20 12.3 17.9 2.03 1.48 431 5.3

51 2.74 17.3 15.8 2.10 I17 .348 6.0 G

52 2.23 15.5 14.4 2.16 1.48 427 6.6
53 4.01 21.1 19.0 2.12 1.94 .237 5.0

54 2.3 13.7 16.8 2.14 1.14 .406 5.6

55 2.51 13.0 19.3 2.04 .29 380 4.9
56 2.88 14.2 20.3 2.15 1.08 .33u 4.7
57 3.08 17.0 18.1 2.29 2.03 309 5.3

58 2.79 10.1 27.6 2.15 1.25 .341 3.4
59 3.09 15.3 20.2 2.37 1.71 .306 4.7

60 3.44 17.5 19.7 40 1.92 .276 4.8

S- ..-
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such variations have been prepared. The basic parameter chosen
for grouping of results is the quantity S, which combines the
effects of both Re and KC and has been shown to be a unifying
quantity for grouping force values on structures in waves in
other studies (e.g. [3,). The i-values have been grouped into
the range 12-16,000 (with an average value of 14,000); 16-
21,k) (with an average of 13,000); 20-24,000 (with an average
01 22,000); and 24-28,000 (with an average of 26,000) . There
are some values outside these ranges, being both smaller and
larger, but without enough data values to allow any proper
;roun !:j results.

The data from Tables 1 and 2 for the painted NW vertical
.. element have been plotted with the abscissa being KC and

th ordinate the particular force coefficient, for a particular
value representing the grouping described above, in Piqures

P)-12. The force values are also shown as functions of the
ratio Uo/u, the ratio of current magnitude to the maximum wave
velocity, by virtue of the different symbols defined in each
tioure which correspond to different ranges of this velocity
ratio parameter.

Examination of these figures generally indicates that the
drao coefficient C decreases with an increase in the current

raio D uvelocity ratio parameter o/u for each value considered.
liowever, there are limited regions of overlap in the KC values
where such a definitive behavior is exhibited. This behavior
is consistent with the results shown by Sarpkaya in [5]. The
inertia coefficient CM does not seem to indicate any signifi-
cant \ariation with the current velocity, or with KC generally.
The range of C values lies primarily between 2.0-2.25, with
some lower and also higher values at the larger KC values
(KC > 20-30). This behavior of CM is consistent with the re-sults of previous system identification analysis work for the
OTS, as shown in [15] and [9], but differs from the values
found by other methods such as in [2] and [6] where the values
tend to be smaller (except for the inertia dominant range of
low KC values).

Although there is some indication given by the data in
Figures 10-12 (for the painted NW leg) that there is an in-
fluence of a current when present together with waves, the
range of current values is too small there to indicate any
definite trend with full acceptability. The results in [5]
are certainly supportive, together with the general principle
that the current will act to move the oscillatory wake further
away from the cylindrical cross-section and thereby reduce
the flow interaction and the resulting drag force. However
more useful data to demonstrate the current influence is pro-
vided by the data set with larger current values, which was
the basis for selecting the 60 waves from the SS9 record of -

the OTS investigation.

I
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The same type of graphical plots were made for the SS9
ave segment results, with the relative current velocity ratio
/u extending to values about 4 times as large as for the

previous data from the C-wave and LS8A records. The B values
for which the data were grouped were 14,000, 18,000 and 22,000,
where these values were the midpoint average of values extending
up to ±2,000 about these average reference values. The results
of the system identification procedure, i.e. the values of CD
and Co found from that type of analysis, are shown plotted as a
function of KC for each 8 value range in Figures 13-15. The
parametric dependency of the current velocity ratio is exhibited
by means of different symbols, as shown in the legend for each
figure.

A number of observations are made concerning this data,
which corresponds to an unpainted sensor element (SW leg)
that would be subject to marine growth bio-fouling and hence
would have some degree of natural roughness. The total number
of records analyzed for this case is much less than the data
for the painted NW leg, and this is manifested in a reduced
degree of overlap of data points (with different relative
current ratio values) over a similar range of KC values. The
magnitudes of C are generally larger for this data when com-
pared with the Values for the unpainted leg data, which is
consistent with results of other analyses of the OTS data
(e.g. see (6]) as well as the general result for increased CD
for rough cylinders in the same type of oscillatory flow

where compared to a smooth cylinder.

There is also a large range of scatter in the CD values,
without any consistency that can be ascribed to the effect
of a current. A possible cause of the scatter could be con-
sidered to be due to the effects of the transport operation
on the measured velocities at the SE leg, but the results of
[9] and other related studies that included such transport
operations did not indicate any large influence on the coef-
ficient values that would produce such a large scatter. A
larger data set could possibly provide more points in the
figures that could lead to an observable trend that could
be related to the influence of the current. Only a liberal
interpretation of the CD values for the different relative
current value, as shown in Figures 14 and 15, would allow a
conclusion that the CD values decreased with an increase in
the relative current ratio value. Replotting the data in
these figures (Fig. 13-15) in terms of the current parameter
expressed by the quantity V , as was done in [5], also did
not exhibit any definitive trend for different ranges of the
parameter VR

There are a large number of force coefficient values con-
centrated in the KC range from 10-20, which is the generally
devoted range indicating drag-inertia dominance. The signifi-
cant scatter of results in the region may be due to some effect

a .' . . . t. . - , -- .~ -. ."- . - . . - -- . . - . " ... - . . .
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of the current, or may be a manifestation of the general flow
complexity in that range for realistic field measurements and
related analyses. The same characteristic of scatter in the
values of the inertia coefficient C occur as well as for CD '
with the CM value extending up to somewhat larger values inthis range than for the smooth painted cylinder results.

- As described above, the coefficients determined from the
system identification analysis for the present data set from
the OTS investigation, did not provide a definitive trend that
could illustrate the effect of current on the forces in waves.
While some trend, which supports the concept of reduction in
C with increase in the current magnitude, was present there
As no dominant effect precisely illustrated even in the case
with larger current values. One important reason for this
was the lack of enough data points, for different relative
current values, over a sufficient extent of KC values that
would allow an overlap of data throughout the KC range. Such
a set would allow simple visual illustration in the figures
of differences due to different relative current ratio values.

During the time of this investigation a separate study
was being carried out in a laboratory test facility by Sarpkaya
[18] to study the effects of a combined wave and current flow
on cylinder hydrodynamic forces. Since the various flow
parameters are more easily controlled in such a laboratory
test, using the special oscillatory water tunnel developed by
Sarpkaya, coverage of the overall KC range for different
relative current ratio values was readily achieved. The re-
results in [18] showed the drag-inertia dominant region (KC
range about 6-20), with the increasing current value leading
to a reduction of C in that range. The effect of the current,
which is ascribed tR wake-biasing in [18], also increases C
in that same range.

While the results of [18] demonstrate the above effects,
and the conclusion that force coefficient values found for
the case of no current cannot adequately predict the forces
arising from a combined current and wave flow, the same type
result was not directly indicated (with enough definitive sup-
portive data) in the present investigation using real ocean
field data and a system identification analysis that demonstrated
good coefficient values fitting the measured data. Some aspects
of agreement with the results of []1 were indicated, but others
were not. In particular the inertia coefficient C does not show
any significant dependence on KC or the current parameter, with
its value always around 2.0 or somewhat larger (up to about 2.6)
This characteristic is always indicated by results of system
identification studies (e.g. [15]1)applied to ocean data, with
such a result differing from values found by any other analysis
method.
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The occurrence of a major influence of a current on force
coefficients in the drag-inertia dominant region (KC range 6-20)
also indicates the possible occurrence of scatter in data
analysis results for force coefficients since the flow field
complexity in that region generally exhibits scatter in coeffi-
cient values associated with that range when analyzing real
ocean field data (e.g. see [6]). The effects of wave orbital
velocities, the possible influence of different directions of
the current and the in-line wave velocity, effects of spacial
coherence in a real ocean flow field, etc. may be contributing
effects that do not allow a definitive influence of current to
be exhibited in the present force coefficient data.

The range of relative current ratios, V values, in the
present data exceeds somewhat the maximum values in [181 (and
also in [5]), but there is no significant trend of current
effects shown in the present results. The influence of the
various other factors discussed above may be over-riding or
masking the direct current effect in the present data. Another
possibility that could influence the present results, in con-
trast to that in [181, is that the Re values are much lower
for the data in [18] (as evidenced by the B values there) than
in the present ocean field data case.

Considering all of these features and the present results,
the only basic utility of the force coefficient results from
the present tests is the values of the coefficients themselves.
These values, and their variations with pertinent dimensionless
parameters as given in Table 1-3 and Figures 10-15, represent
another contribution to a data base for wave force coefficients
that have been determined from analysis of realistic ocean data.
Such information can be used, toether with additional guidance
from theory and related laboratory model test data, to provide
suggested values of force coefficients for use in Morison equa-
tion applications for offshore structure design.

-S
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CONCLUDING REMARKS

The present analysis has demonstrated the utility of a
previously applied technique of system identification to
determine the values of the inertia and drag coefficients in
the Morison equation representation of wave forces on an
instrumented segment of an offshore structure; even when a
current is part of the incident flow field. The procedure
includes an on-line filtering action, as well as providing
a measure of how well the estimated forces, velocities, etc.
match the measured values throughout the entire measured time
histories. The values of the force coefficients found by
this method in the present study are found to be reasonably
constant, and the Morison equation model suitability as a
means of representing the wave forces in the presence of a
current is generally exhibited by these results.

The force coefficient values found in this study do not
exhibit any definitive variations with a current parameter,
although there is some indication of a reduction of C as the
relative current ratio increases. The result of actuRl data
from the field measurements do not provide an adequate range
coverage of all pertinent parameters such as KC and the relative
current ratio that could indicate a definite trend in the data.
The inertia coefficient C does not exhibit any significant
variability with these parameters, with the CM values generally
being in the range of 2.0-2.6 for all of the conditions considered.

The data obtained from this study, which represents 222
sets of coefficients from an analysis of forces on both smooth
(painted) and slightly rough (unpainted) element: of an off-
shore structure, can be used as part of a data base for estab-
lishing design ranges of such force coefficients. As such it
provides an additional set of values, which have been demon-
strated to have validity as a result of their matching of
measured forces, for use in establishing such engineering tools
that can be applied for offshore structure design.

S'
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